Role of hippocampal NMDA receptors in trace eyeblink conditioning.
نویسندگان
چکیده
We examined the effects of acute injections of competitive N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovaleric acid (APV) into the dorsal hippocampus on contextual fear conditioning and classical eyeblink conditioning in C57BL/6 mice. When injected 10 to 40 min before training, APV severely impaired contextual fear conditioning. Thus, APV injection under these conditions was sufficient to suppress hippocampal NMDA receptors. To investigate the role of hippocampal NMDA receptors on eyeblink conditioning, we carried out daily training of mice during 10-40 min after injection of APV. In the delay eyeblink conditioning, in which the unconditioned stimulus (US) is delayed and terminates simultaneously with the conditioned stimulus (CS), APV-injected mice acquired the conditioned responses (CRs) as well as artificial cerebrospinal fluid (aCSF)-injected control mice did. However, in the trace eyeblink conditioning, in which the CS and US were separated by a stimulus-free trace interval of 500 ms, APV-injected mice showed severe impairment in acquisition of the CR. There was no significant difference in pseudo-conditioning between APV- and aCSF-injected mice. These results provide evidence that the NMDA receptor in the dorsal hippocampus is critically involved in acquisition of the CR in long trace eyeblink conditioning.
منابع مشابه
Hippocampal CA3 NMDA receptors are crucial for adaptive timing of trace eyeblink conditioned response.
Classical conditioning of the eyeblink reflex is a simple form of associative learning for motor responses. To examine the involvement of hippocampal CA3 NMDA receptors (NRs) in nonspatial associative memory, mice lacking an NR1 subunit selectively in adult CA3 pyramidal cells [CA3-NR1 knock-out (KO) mice] were subjected to eyeblink conditioning paradigms. Mice received paired presentations of ...
متن کاملSystems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning.
The importance of the hippocampus in declarative memory is limited to recently acquired memory, and remotely acquired memory is believed to be stored somewhere in the neocortex. However, it remains unknown how the memory network is reorganized from a hippocampus-dependent form into a neocortex-dependent one. We reported previously that the medial prefrontal cortex (mPFC) is important for this n...
متن کاملTrace eyeblink conditioning requires the hippocampus but not autophosphorylation of alphaCaMKII in mice.
Little is known about signaling mechanisms underlying temporal associative learning. Here, we show that mice with a targeted point mutation that prevents autophosphorylation of alphaCaMKII (alphaCaMKII(T286A)) learn trace eyeblink conditioning normally. This forms a sharp contrast to the severely impaired spatial learning in the water maze and contextual fear conditioning observed in alphaCaMKI...
متن کاملAssessment of the role of NMDA receptors located in hippocampal CA1 area on the effects of oral morphine dependency on spatial learning and memory in rat
Introduction: It has been reported that oral morphine dependency facilitated formation of spatial learning and memory. In the present study the role of NMDA receptors located in hippocampal CA1 area of morphine dependent rats was studied. Methods: Male rats were divided into 4 groups. Two cannulae were stereotaxically implanted bilaterally into the hippocampal CA1 area. After 5 days recover...
متن کاملNeurobiology of Learning and Memory
The effects of bilateral hippocampal aspiration lesions on later acquisition of eyeblink conditioning were examined in developing Long–Evans rat pups. Lesions on postnatal day (PND) 10 were followed by evaluation of trace eyeblink conditioning (Experiment 1) and delay eyeblink conditioning (Experiment 2) on PND 25. Pairings of a tone conditioned stimulus (CS) and periocular shock unconditioned ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1039 1-2 شماره
صفحات -
تاریخ انتشار 2005